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Abstract 
Object recognition using the tactile sense is one of the leading human capacities. 
This capability is not as developed in robotics as other sensory abilities, e.g., 
visual recognition. In addition to the robot’s ability to grasp objects without 
damaging them, it is also helpful to provide these machines with the ability to 
recognize objects while gently manipulating them, as humans do in the absence 
of or complementary to other senses. Advances in sensory technology have 
allowed us to detect different types of environments accurately. However, the 
challenge of being able to represent sensory information efficiently persists. We 
propose a sensory system that allows a robotic gripper armed with pressure 
sensors to recognize objects through tactile manipulation. We design a pressure 
descriptor to characterize the voltage magnitudes across different objects and, 
finally, use machine learning algorithms to recognize each object category. The 
results show that our pressure descriptor characterizes the different categories of 
objects in this experimental setup. Our system can complement other sensory data 
to perform different tasks in a robotic environment and we propose future 
research areas to handle tactile manipulation problems. 
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1 Introduction 
Humans have a complex multi-sensory system that allows them to interact with 
the surrounding unstructured environment and perform complicated tasks. 
Currently, several production processes still require human manipulation. In 
some cases, these processes need palpations for quality assurance detecting 
irregularities or damages, as in the classification of fruit maturity states. 
Furthermore, other processes are dangerous and involve risk to life, e.g. the 
handling of radioactive materials [1]. In general, human performance in 
inspection tasks decreases because of stress, fatigue or illness, among other 
factors [2]. This fact illustrates the point that robotic manipulation that allows for 
recognizing and sensing the manipulated object can improve automation. For 
these reasons, it is necessary to improve the sensitivity of robotic grippers while 
providing security to human inspectors and enhancing the processes’ automation. 
We believe that progress in this research area would be helpful to expand the 
usages of Non-Destructive Testing (NDT) to processes still strongly performed 
by humans. 

Recent advances in robotics demonstrate the potential uses of robots or 
autonomous agents in many areas of our lives, for instance self-driving 
vehicles [3–5], medical applications [6, 7], social robotics [8], and autonomous 
underwater vehicle (AUV) systems [9, 10], among others. In this sense, robots 
have achieved consistent progress in mimicking human abilities of sensing 
and decision making, i.e. the robot’s sensors can acquire stimuli from the 
environment and decide as people do through their smell, vision and skin. The 
improvements and development of sensing technologies have helped robots 
become more precise in sensing various stimuli perceived by humans, e.g. in 
gas detectors [11], light sensors [12] and pressure [13]. 

This work describes a methodology for recognizing objects using a robotic 
manipulator armed with a set of strain gauges arranged in a Wheatstone 
bridge configuration as pressure sensors. Each sensor provides a voltage 
signal according to the surface of the objects. We collect a series of voltage 
measurements during data acquisition while the gripper puts pressure on the 
test object. Then, in our process pipeline, the system transforms the voltage 
levels into a feature descriptor to characterize each object’s category. We 
design this descriptor to represent the voltage variations. We use this data as 
input for a set of classification algorithms: i) Decision Tree, ii) Naive Bayes (NB), 
iii) Neural Networks (NN), iv) k-Nearest Neighbours (k-NN) and v) Support 
Vector Machine (SVM). We implement all these algorithms using the Python 
module Scikit-learn [14]. Our method allows for object recognition with different 
types of harness. Along with this research, we address two problems: i) recognize 
objects using pressure sensors, emulating human execution, and ii) automate 
inspection processes or eventually provide an analytic tool for people working in 
production lines with manual inspection providing quality indices, such as fruit 
exporting companies. 

A literature review on tactile manipulation and recognition identifies three 
main research areas: centred on the construction and performance of grippers 
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[15, 16]; focused on pressure sensors [17, 18]; and finally, focused on object 
recognition through grippers [13]. In the latter research, the use of the k-NN 
algorithm provides the best results. In this study, we extend the work in [13], 
incorporating another type of sensor and another set of machine learning 
algorithms. The results show that these additional changes improve the 
performance in recognition. 

We carry out experiments with a limited database (similar to the database 
used in [13]). We manually collect and assign labels to ten object categories: 
computer mouse, glue container, rubber duck, smartphone, bell pepper, ball 
of wool, stress ball, dishwashing sponge, can of soda and apple. All of these 
objects present a wide variability, varying from rigid to flexible. We use the 
True Positive Rate (TPR) and the False Positive Rate (FPR) performance 
indices to quantify and evaluate our methodology’s best settings. Our results 
show the best performance in recognition of two categories using the SVM 
classifier: soda cans, with a TPR = 100% and FPR = 0%, and in apples, with 
a TPR = 100% and FPR = 3%. These results are encouraging and support the 
use of our method in environments that require handling processes. 

This article presents the following three contributions: 

A low-cost method for data acquisition using tactile sensors, 
A tactile descriptor for object recognition in the context of NDT, 
A database of objects with variable surface properties.1 

The document is organized as follows. Section 2 presents related work on 
tactile sensors and concepts involved in our work. Section 3 introduces and 
describes our approach theoretically and summarizes the classification method 
used in the experimental test. Section  4  describes  the experimental setup and 
the results of using our method. Finally, Section 5 outlines our conclusions, main 
remarks and further improvements. 

 
 

2 Related Work 
Non-destructive testing is crucial in a production environment that secures the 
quality of products delivered to final customers [19]. In certain situations, these 
tests involve the manipulation of objects by human inspectors. Currently, more 
and more companies rely on automation in the inspection process. Robotic 
manipulators are preferred mechanisms to mimic the human role during the 
inspection and manipulation [20–23]. However, robotic manipulators 
generally lack sensory feedback that lets them know or register information 
about the manipulated object. 

Tactile sensing uses a set of sensors to measure one or more tactile 
properties through physical touch, such as temperature, shape and texture. 
These sensors allow the loop to be closed between the manipulator and the 
decision system. In the last forty years, research on tactile sensing has  
demonstrated its  

 
1 See https://www.dropbox.com/s/977e52z0wtyom4o/Data_Base_Tactile_Sensing.rar?dl=0 
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potential in biomedicine [24, 25], minimally invasive surgery [26, 27] and 
robotics and manufacturing [23, 28], among others. 

Research into tactile sensors involves the use and development of different 
technologies. Nevertheless, there is a significant cost-effective trade-off to ensure 
that these technologies enter at industry level [29, 30]. Strain gauges are a low-
cost alternative for sensing surfaces. These types of sensors present a particular 
behaviour of hysteresis that introduces noise during the measuring. A Wheatstone 
bridge configuration provides immunity to noise to the system [31].  

In robotic environments, tactile recognition provides a complementary 
method to visual recognition to cope with ambiguities. In the last ten years, tactile 
sensors for material and object recognition have gained attention in classification 
and inspection tasks. Machine Learning algorithms are a crucial part of 
recognition systems that contribute as a critical stage for the automatic inspection 
context [30]. 

Object recognition through tactile sensors is still an open problem and 
presents challenging questions about the sensors, inspection sequence and 
movements, and processing techniques. In 2006, Mazid et al. introduced an opto-
tactile sensor able to assess the surface texture of objects as an input to object 
recognition stages [44]. The authors proposed a mathematical model to relate 
geometrical parameters to the output voltage. Their results demonstrate its simple 
construction and viability for integrating this technology on a robotic platform. 
However, the article did not dive into using the sensor output to ingest recognition 
stages of classification models. By contrast, our work focuses on the recognition 
stages, leaving the methodology open to integrating any sensory device to acquire the 
tactile data. In [13], the authors proposed a robust tactile sensor based on 
piezoresistive materials and conducting thread electrodes. Materials gave the sensor 
high repeatability. During an active exploration procedure, a robotic gripper 
performed palpations on the objects and acquired information to describe and classify 
the objects. The authors use a small dataset of 12 object classes. The results showed 
successful sensor measurements in a haptic-based object-classification scenario 
compared with a well-known industrial sensor. Finally, a KNN model discriminated 
between the time series of the different pressure patterns. In our work, we use a 
similar setup as in [13] but extend the results by evaluating a pressure descriptor in a 
set of machine learning methods. The pressure descriptor is a combination of voltage 
levels at different gripper rotations. The authors in [33] presented a systematic 
comparison of features and classification algorithms to recognize 49 real-word 
objects using data from a BioTac tactile sensor. The analysis included the 
quantitative comparison of performance using different sets of features such as 
pressure, statistical moments, temperature, physical movements and temporal 
features. 
 
Later, the authors in [42] proposed a magnetostrictive tactile sensing system that used 
an Extreme Learning Machine (ELM). The authors conducted experiments using four 
different kinds of stiffness, repeating the grasp 30 times for each material. 
Experiments showed precision and consistency in the output of the magnetic probe. 
The results also showed the advantages of the ELM model with a low number of 
training samples. However, the tests were still limited in samples, materials and 
forms. Our work expands the way to represent the object, including different 
palpitation points. 
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Recently in [43], Li et al. proposed a quadruple skin-inspire tactile sensor system 
used in the task of garbage identification. The system integrated four different sensors 
into a robotic hand: pressure sensing, material thermal conductivity sensing, and 
bimodal temperature sensing for the robot hand to recognize objects precisely. The 
system also included a stage of data integration through machine learning techniques. 
In our work, we focus on the way that we can represent the pressure vector. Instead 
of using multiple sensors, we include multiple rotations of the robotic hand. We also 
use a small dataset of objects based on previous work in order to present a prototype 
of this framework. 
Similarly, we use machine learning methods to discriminate between objects and 
demonstrate the effectiveness of the descriptor as in [13, 33, 42, 43]. We refer the 
reader to [23, 30, 32, 45] for a detailed review of tactile sensing in robotics and other 
related areas.  
 

 
3 Method 
This section describes our proposed methodology, including the pressure 
descriptor based on the tactile sensor measurements, as follows: i) Overview, 
ii) Pressure descriptors, iii) Characterization and training, iv) Classification 
algorithms, and v) Receiver operating characteristic. 

 
3.1 Overview 
We frame our research in the context of the automatic inspection of objects. 
In this sense, our methodology comprises a processing pipeline composed of 
three stages: data acquisition, data transformation and feature engineering, 
and classification (Figure 1). 

The Data Acquisition stage comprises a robotic gripper armed with 
pressure sensors that provide an electrical measurement from the palpation. 

 

 
 

Fig. 1 Diagram of the processing pipeline. It has three stages that range from data acquisition 
to classification. Training of the models was performed offline and used a manually collected 
dataset. 
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The Data Transformation and Feature Engineering stage controls the 
preprocessing of the electrical signals collected by the gripper and transforms 
them into a pressure descriptor. Finally, the Classification stage evaluates the 
descriptor and provides the object’s class according to a Machine Learning 
model previously trained using a training set. Using this pipeline, we manually 
collected and built a dataset with pressure measurements from ten object 
classes. The gripper acquired 40 different pressure points during this process 
by rotating the object for each sample (see Figure 2). 

 
 

 

Fig. 2 Diagram of the process of characterization of objects. 
 
 

3.2 Pressure Descriptor 
The acquisition stage yielded a record of the voltage levels from pressure sensors 
as the object rotated. We proposed a pressure descriptor that organized the 
samples as a two-dimensional data array, increasing the discriminative capacity 
of the collected data. 

 

 
 

Fig. 3 Detail of one of the gripper’s fingers. 
 
 

The stepper motor performed micro-steps to obtain the pressure descriptor, 
causing the gripper fingers to close slowly. Once the gripper made the first 
contact with the test object, low-density and high-density polyurethane foams 
began to deform and exert pressure on the strain gauge, as shown in Figure 3. 
The stepper motor made ten steps, counting from when the first contact with 
the test object was established, i.e. when the system acquired the first voltage 
level. In this way, the pressure descriptor began to be built (see equation 1). 



7  

During acquisition, there was no direct contact between the fingers of the 
gripper and the object. The motor only rotated in micro-steps, and the low-
density and high-density polyurethane foams absorbed the pressure. 
Therefore, the test object was never damaged. Each pressure level was 
acquired and set as part of the pressure descriptor. 

The descriptor simultaneously stored the pressure values of each object and 
rotation. The pressure descriptor is defined as 𝐹𝐹𝑐𝑐𝑐𝑐, as shown in the equation  (1): 

 

𝐹𝐹𝑐𝑐𝑐𝑐 = �𝑓𝑓𝑗𝑗
(𝑖𝑖)� =

⎣
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𝑓𝑓1

(𝑚𝑚) 𝑓𝑓2
(𝑚𝑚) ⋯ 𝑓𝑓𝑛𝑛

(𝑚𝑚)⎦
⎥
⎥
⎥
⎤
 (1) 

 
where 𝑐𝑐 corresponds to the class of the object varying from 𝑐𝑐 =  1, . . . ,𝑀𝑀; 𝑡𝑡  
corresponds to the test object of class 𝑐𝑐, which varies from 𝑡𝑡 =  1, . . . ,𝑁𝑁; 𝑖𝑖 
corresponds to the relative position of the measured object, which ranges from 
𝑖𝑖 =  1, . . . ,𝑚𝑚; and 𝑗𝑗 corresponds to the number of pressures exerted on the 
object, which ranges from 𝑗𝑗 =  1, . . . ,𝑛𝑛. 

In the process of acquiring these measurements, each 𝑓𝑓𝑗𝑗
(𝑖𝑖) corresponds to an 

instantaneous voltage value, which varied according to the pressure exerted 
on an object of class 𝑐𝑐 and in the position 𝑖𝑖.  
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3.3 Characterization and training 
We manually placed each object on the gripper during data acquisition until 
the sensing process finished, smoothly increasing the pressure level 𝑗𝑗, 
similarly to how a human would behave. This procedure occurred at four 
different positions 𝑖𝑖. For example, as seen in Figure 2, in the case of the 
apple, the gripper got the first measurements at angles of 0° and 180°, the 
second at 45° and 225°, the third at 90° and 270° and the last ones at 135° and 
315°. For objects with non-spherical or irregular shapes, such as the 
Smartphone, we removed two of the four gripper fingers, leaving only the 
gripper fingers with the pressure sensors. Thus, the palpations occurred at 
different non-coincident points. Finally, for each pair of angles at 𝑗𝑗 =
 1 . . . 10, we collected the respective pressure values, as shown in Table 1 
and Figure 2. We repeated this procedure for each object, collecting the 
pressure levels and annotating the object label. 

 
3.4 Classification Algorithms 
The dataset formation and model training were an “offline” procedure. We 
implemented a set of Machine Learning algorithms used for classification: 
Decision  Tree [34],   Naïve  Bayes (NB) [35], Neural  Networks (NNs) [36], k-
Nearest Neighbours (k-NN), and Support Vector Machine (SVM) [37]. We used 
these five algorithms to evaluate our pressure descriptor’s discriminative power 
and find the classifier that performed best in our processing pipeline for the 
different object flexibility and stiffness states. In the following subsections, we 
briefly describe the classifiers included in this study. 

 
3.4.1 Decision tree 
Decision trees are information-based models that build a hierarchical structure to 
provide instance classification [34]. The hierarchical structure defines a set of 
rules that works as a decision process. The tree begins at a node called the root 
that contains the first attribute that will lead to new rules called decision nodes, 
forming branches until a terminal node or leaf node is reached. In this structure, 

A leaf indicates a class, 
A decision node specifies a test to be performed on a single attribute value, 
with a branch and subtree for each possible outcome. 

The traverse of the tree structure eventually (and inevitably) leads to a leaf node 
that indicates the class to which the instance belongs. Along with the training, 
Decision Tree algorithms rely on heuristics in order to simplify the tree’s 
structure while keeping the interpretability without compromising accuracy 
[34], e.g. reduced error pruning (REP), pessimistic error pruning (PEP) and 
minimum error pruning (MEP) [38]. 
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3.4.2 Naive Bayes 
Naive Bayes is a probabilistic-based model that relies on Bayes’ Theorem and 
the conditional independence assumption for modelling the conditional 
probability of a class given the attributes. A Naive Bayes classification 
scheme requires the estimation of the probability density function (pdf) at a 
point  𝑥𝑥 = [𝑥𝑥(1),⋯ ,𝑥𝑥(𝑙𝑙)]⊤     ∈ ℝ𝑙𝑙 , given by: 
 

𝑝𝑝(𝑥𝑥) = �𝑝𝑝(𝑥𝑥(𝑗𝑗))
𝑙𝑙

𝑗𝑗=1

 (2) 

 

The probability computation assumes the feature vector components 𝑥𝑥𝑗𝑗 
are statistically independent. This assumption is helpful in high-dimensional 
spaces, where many training points must be available to obtain a reliable 
estimate of the corresponding multidimensional probability density function. 
Despite the naive assumption of the feature independence given the class, the 
overall performance is reasonable since reliable estimates of the 1-
dimensional probability density function are still achievable with relatively 
few data values [39]. 

 
 

3.4.3 Artificial Neural Network 
An Artificial Neural Network (ANN) is an error-based model, where the neuron 
is the fundamental element that tries to imitate the human brain’s function. A 
simple ANN model is the perceptron. Each perceptron is excited by a 
weighted sum over the input signals 𝑥𝑥(1),𝑥𝑥(2), . . . ,𝑥𝑥(𝑙𝑙) with their 
corresponding weights 𝑤𝑤1 ,𝑤𝑤2,⋯ ,𝑤𝑤𝑙𝑙 , known as synaptic weights by analogy 
with the terminology used in neuroscience. The weighted sum then passes 
through an activation function that decides if the neuron “fires”, i.e. it gives 
an output value; otherwise, it remains inactive. 

The training of an ANN aims to estimate the weights and bias values of all 
the neuron layers involved in the network based on minimizing a cost function. 
The most widely used option is the least-squares loss function: 

 

𝐽𝐽 = ��𝑦𝑦𝑗𝑗 − 𝑦𝑦�𝑗𝑗�
2

𝑁𝑁

𝑗𝑗=1

 (3) 

 

where N is the total number of data points in the dataset, 𝑦𝑦𝑗𝑗 is the true class label 
of 𝑥𝑥𝑗𝑗 ∈ ℝ𝑙𝑙  and 𝑦𝑦�𝑗𝑗 is the output of a neural network. In general, the cost function 𝐽𝐽 
has several local minima. Therefore, the choice of the initial parameters 
influences the solution during minimization. In practice, the algorithm is 
performed several times, starting from different initial values. The weights 
corresponding to the best solution are the network parameters [36, 39]. 
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3.4.4 k-Nearest Neighbours 
The k-Nearest Neighbours (k-NN) is a similarity-based method, where the 
objective is to estimate the unknown value of the given probability density 
function at a point  𝑥𝑥.  During the neighbour estimation, the k-Nearest Neighbours 
algorithm performs the following steps: 

a) Choose a value for 𝑘𝑘. 
b) Find the distance between 𝑥𝑥 and all training points 𝑥𝑥𝑖𝑖, 𝑖𝑖 =  1, 2, . . . ,𝑁𝑁. Any 

measure of distance can be used (e.g., Euclidean, Mahalanobis). 
c) Find the 𝑘𝑘 nearest points to 𝑥𝑥. 
d) Compute the volume 𝑉𝑉(𝑥𝑥) in which the 𝑘𝑘 nearest neighbours lie. 
e) Compute the estimate by 

 

𝑝𝑝(𝑥𝑥) ≈
𝑘𝑘

𝑁𝑁𝑁𝑁(𝑥𝑥)
 (4) 

 

If the k-NN algorithm uses Euclidean distance and the distance between the 
furthest neighbour 𝑘𝑘 and 𝑥𝑥 is 𝜌𝜌, the volume 𝑉𝑉(𝑥𝑥) is equal to: 
 

𝑉𝑉(𝑥𝑥) = 2𝜌𝜌    in 1-dimensional space, (5) 
 

𝑉𝑉(𝑥𝑥) = 𝜋𝜋𝜌𝜌2    in 2-dimensional space, or (6) 
 

𝑉𝑉(𝑥𝑥) =
4
3
𝜋𝜋𝜌𝜌3    in 3-dimensional space. (7) 

 
For the more general case of 𝑙𝑙  dimensions and/or the Mahalanobis distance, 

see [37, 39]. 
 

3.4.5 Support Vector Machine 
The Support Vector Machine (SVM) is another error-based model that aims to 
solve a non-linear classification task mapping the feature vectors into a larger- 
dimensional space. We expect the classes to be linearly separable. This mapping 
is given by: 
 

 
where 𝑥𝑥 ∈  ℝ𝑙𝑙  and the dimensionality of 𝐻𝐻 is greater than ℝ𝑙𝑙 depending on the 
choice of (non-linear) 𝜙𝜙( ∙ ). Also, if we carefully choose the mapping function 
from a known family of functions with desirable and specific properties, the inner 
product between the images (𝜙𝜙(𝑥𝑥1),𝜙𝜙(𝑥𝑥2)) of two points 𝑥𝑥1and  𝑥𝑥2 can be 
written as: 

 
< 𝜙𝜙(𝑥𝑥1),𝜙𝜙(𝑥𝑥2) > = 𝑘𝑘(𝑥𝑥1, 𝑥𝑥2) (9) 

 

where, < ∙ , ∙ > denotes the operation of the inner product on 𝐻𝐻, and 𝑘𝑘( ∙ , ∙ ) is a 
function known as a kernel function. Thus, the inner products in the high-
dimensional space perform the kernel function 𝑘𝑘 over the original low-
dimensional space. The space E associated with 𝑘𝑘( ∙ , ∙ ) is known as a 
Reproducing Kernel Hilbert Space (RKHS). 

𝑥𝑥 ↦ 𝜙𝜙(𝑥𝑥)   ∈    𝐻𝐻 (8) 
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A notable feature of SVM optimization is that all operations are inner 
products. Therefore, linear problems in high-dimensional space (after mapping) 
only require the inner products using the corresponding evaluating kernel. 

 
 

4 Experimental Results 
This section describes and shows the experimental setup we used to conduct 
the experiments to validate our methodology. This setup is a prototype for 
this research, and future work in this area can include improvements to the 
setup. 
 

 
Fig. 4 Data acquisition system. 

 

 

4.1 Experimental Setup 
We developed an acquisition system to evaluate our methodology (see Figure 
4). This pipeline starts with a 3D-printed gripper designed by us, motorized 
by a 5 Volt 1.8-degree stepper motor, model KHP-11m10, manufactured by 
OKI Electric. This motor has high torque and tiny steps, which favours the 
palpation of objects, i.e. as smoothly as a human hand can. A 5 Volt 1000mA 
power supply energizes a Toshiba ULN2803APG that drives and protects the 
stepper motor’s coils. In a Wheatstone bridge configuration, the gripper has 
attached a set of 4 strain gauges of 3.5mm and 120 ohms as a pressure sensor. 
Two of the four strain gauges R1 and R2 are attached to two gripper fingers 
(opposite fingers). The other two strain gauges, R3 and R4, are attached to the 
static surface of the gripper in such a way that the bridge is in balance, and it 
will only become unbalanced when R1 and R2 deform. A Texas Instruments 
INA128P instrumentation amplifier acquires the voltage levels from the strain 
gauge. Finally, an Arduino Uno board acquires and sends the voltage to a 
computer. Figure 5 shows the complete acquisition system.  
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Fig. 5 System used for object inspection. 

 
4.2 Dataset Description 
We built a dataset manually by collecting and annotating measurements for 
ten object classes present in everyday life using our acquisition system. These 
classes were: computer mouse, glue container, rubber duck, smartphone, bell 
pepper, ball of wool, stress ball, dishwashing sponge, can of soda, and apple, 
as shown in Figure 6. The maximum range of the gripper opening constrains 
the object's size that the system can recognize. In our case, the dataset 
included objects smaller than 10 centimetres. However, this limitation will 
depend on the context of the system, i.e., bigger grippers allow for bigger 
objects. 
 

 

 
 

 

 

 

 

 

 
Fig. 6 Representative objects of each of the classes used in this work: (a) computer mouse, 
(b) glue container, (c) rubber duck, (d) smartphone, (e) bell pepper, (f) ball of wool, (g) stress 
ball, (h) dishwashing sponge, (i) can of soda, and (j) apple. 

 
 

The gripper palpated the objects in different positions around an 
imaginary line in its centre during the acquisition, as shown in Figure 2. For 
instance, the gripper palpated an apple obtaining four measurements: the first 
at angles of 0° and 180°, the second at 45° and 225°, the third at 90° and 270°, 
and the fourth at 135° and 315°. For each pair of angles, the gripper provided 

     (a)      (b)      (c)      (d)      (e) 

     (f)      (g)      (h)      (i)      (j) 
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ten levels of pressure. Table 1 contains an example of the ten values provided 
for each rotation of an apple. Figure 7 visualizes the data in Table 1 to show 
how we created our pressure descriptor graphically. Not all the objects in our 
research had a spherical or cylindrical shape. In such cases, such as a 
Smartphone, we proceeded to palpate the 4 points randomly, taking care that 
none of these points coincided. 

 
Table 1 Values obtained for the descriptor of an apple, that is, 𝐹𝐹𝑐𝑐𝑐𝑐 , with class c = 10 and 
with the apple object 𝑡𝑡 =  3. 

 

Angles (𝑖𝑖) 
Level of pressure exerted (j) 

1 2 3 4 5 6 7 8 9 10 
0° – 180° 0.020 1.104 1.733 2.290 2.705 2.705 2.827 3.223 3.315 3.452 

45° – 225° 0.005 0.449 1.636 2.163 2.944 3.311 3.350 3.276 3.740 3.638 

90° – 270° 0.005 0.234 1.182 2.056 2.788 2.769 3.262 3.149 3.647 3.687 

135° – 315° 0.005 1.074 1.890 2.881 2.568 3.369 3.223 3.716 3.608 3.691 

 
Fig. 7 Graphical representation of the descriptor obtained from the pressure exerted on an 
apple. 

 
 

The pressure descriptor allowed us to characterize the different objects 
used in this research (see Figure 6). Using the acquired measurements and 
following the representation of equation (1) we have: 

 

𝐹𝐹𝑐𝑐𝑐𝑐 = �𝑓𝑓𝑗𝑗
(𝑖𝑖)� = �

0.020 1.104 1.733 2.290 2.705 2.705 2.827 3.223 3.315 3.452
0.005 0.449 1.636 2.163 2.944 3.311 3.350 3.276 3.740 3.638
0.005 0.234 1.182 2.056 2.788 2.769 3.262 3.149 3.647 3.687
0.005 1.074 1.890 2.881 2.568 3.369 3.223 3.716 3.608 3.691

� 

 

Using our experimental setup, we collected ten object samples (𝑡𝑡 =
  1, . . . , 10) per class (𝑐𝑐 = 1, . . . , 10) shown in Figure 6. The acquisition system 
provided the ten levels of pressure exerted (𝑗𝑗 = 1, . . . , 10) per object instance 
at the four measurements positions (𝑖𝑖 = 1, . . . , 4). Therefore, our training-
testing database had a total number of 400 object instances. 

 
 

4.3 Evaluation and Results 
We conducted all the experiments using Python for both of our pipeline’s main 
tasks: data acquisition and data classification. We implemented all the 
classification algorithms using the Python module Scikit-Learn [14]. 

Evaluation of the classification algorithm considered the standard 
performance indicators True Positive Rate (TPR) and Specificity or False 
Positive Rate (FPR), both widely used in the Machine Learning literature [40] 
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and defined as follows: 
 
 

 

 
where 𝑇𝑇𝑇𝑇 is the number of true positives, 𝐹𝐹𝐹𝐹 is the number of false positives, 
𝐹𝐹𝐹𝐹 is the number of false negatives, 𝑁𝑁𝑝𝑝  is the total number of positives in the 
test database, and 𝑁𝑁𝑛𝑛 is the total number of negatives in the test database. TRP 
and FPR are related to each other in the Receiver Operating Characteristic (ROC) 
context, where both indicators locate in a two-dimensional coordinate system. 
The resulting curve will always be monotonic, increasing in both axes. 
Therefore, the closer the curve is to the upper left corner (TPR =  1 and 
FPR =  0), the better the detection algorithm. The area under the ROC curve 
(AUC) summarizes the behaviour of the TPR and FPR [41]. In order to take 
advantage of the complete dataset, we ran our experiments applying the cross-
validation technique using ten folds (90% of the dataset used for training and 
10% used for testing). We refer the reader to [40] for more details about model 
evaluation techniques. 

 
 

4.3.1 Decision Tree (DT) 

Confusion matrix analysis (see Table 2) showed that Decision Trees achieved an 
average accuracy of 88.25%. The class Can achieved the best classification, 
obtaining 97.5% of correct classifications. By contrast, the classes mouse, school 
glue and rubber duck gave the lowest performance (80%). 

 
Table 2 Confusion matrix for the Decision Tree algorithm. The average accuracy for this 
algorithm was 88.25%. 

 
a b c d e f g h i j Classified as 

80 0 5 2.5 0 0 7.5 0 0 5 a = Mouse 
10 80 0 0 0 0 0 0 0 10 b = Scholar glue 
7.5 0 80 0 12.5 0 0 0 0 0 c = Rubber duck 
0 0 0 92.5 7.5 0 0 0 0 0 d = Smartphone 
0 0 5 2.5 90 2.5 0 0 0 0 e = Bell pepper 
0 0 0 0 0 92.5 0 5 2.5 0 f = Wool 

2.5 0 2.5 0 0 0 95 0 0 0 g = Ball 
0 0 0 2.5 0 5 0 92.5 0 0 h = Sponge 
0 0 0 0 0 2.5 0 0 97.5 0 i = Can 

7.5 7.5 0 0 0 0 2.5 0 0 82.5 j = Apple 
 
 
 
 
 

TPR =
𝑇𝑇𝑇𝑇
𝑁𝑁𝑝𝑝

=
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 (10) 

FPR =
𝐹𝐹𝐹𝐹
𝑁𝑁𝑛𝑛

=
𝐹𝐹𝐹𝐹

𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹
 (11) 
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4.3.2 Naive Bayes (NB) 

For the Naive Bayes classifier, the confusion matrix results indicate that the 
algorithm achieved an average accuracy of 93.25% (Table 3). This performance 
is higher than Decision Trees by 5%. Specifically, the Can and Apple classes 
achieved the best performance (100%) while the classes rubber duck and bell 
pepper gave the poorest performance, achieving 85% of correct classifications. 

 
Table 3 Confusion matrix for the Naive Bayes algorithm. The Apple class achieved the best 
performance. 
 

a b c d e f g h i j Classified as 
87.5 0 5 0 0 0 2.5 0 0 5 a = Mouse 

0 97.5 0 0 0 0 2.5 0 0 0 b = Scholar glue 
7.5 0 85 0 7.5 0 0 0 0 0 c = Rubber duck 
0 0 0 92.5 5 0 0 2.5 0 0 d = Smartphone 
0 0 5 7.5 85 2.5 0 0 0 0 e = Bell pepper 
0 0 0 0 2.5 97.5 0 0 0 0 f = Wool 

2.5 0 2.5 0 0 0 95 0 0 0 g = Ball 
0 0 0 2.5 0 5 0 92.5 0 0 h = Sponge 
0 0 0 0 0 0 0 0 100 0 i = Can 
0 0 0 0 0 0 0 0 0 100 j = Apple 

 
 
 

4.3.3 Neural Network (NN) 
The analysis carried out on the confusion matrix showed that NN correctly 
classified an average of 93.5% of the instances, being slightly higher than Naive 
Bayes by 0.25%. The class Can achieved the best performance (100%). The 
lowest performance for this model occurred for bell pepper, which only achieved 
82.5% of instances correctly classified. 

 
Table 4 Confusion matrix for the Neural Network algorithm. The class Can achieved the 
best performance. 
 

a b c d e f g h i j Classified as 
92.5 0 2.5 0 0 0 2.5 0 0 2.5 a = Mouse 

0 95 0 0 0 0 2.5 0 0 2.5 b = Scholar glue 
2.5 0 97.5 0 0 0 0 0 0 0 c = Rubber duck 
0 0 0 90 5 0 0 5 0 0 d = Smartphone 
0 0 5 10 82.5 0 0 0 2.5 0 e = Bell pepper 
0 0 0 0 0 97.5 0 2.5 0 0 f = Wool 
0 2.5 5 0 0 0 92.5 0 0 0 g = Ball 
0 0 0 2.5 0 2.5 0 95 0 0 h = Sponge 
0 0 0 0 0 0 0 0 100 0 i = Can 

2.5 5 0 0 0 0 0 0 0 92.5 j = Apple 
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4.3.4 k-Nearest Neighbours (k-NN) 

The analysis carried out on the confusion matrix (see Table 5) showed that KNN 
achieved an average of 94.25% (377 hits) of instances correctly classified, being 
superior to NN by 0.75% and superior to DT by 6%. The classes Rubber duck 
and Can achieved the best performance (100%). The lowest classification was 
with bell pepper, reaching 85% of correct classifications. 

 
Table 5 Confusion matrix for the k-NN algorithm. The model achieved the best 
performance for the classes Rubber Duck and Can. 

 
a b c d e f g h i j Classified as 

90 0 2.5 0 5 0 2.5 0 0 0 a = Mouse 
0 97.5 0 0 0 0 2.5 0 0 0 b = Scholar glue 
0 0 100 0 0 0 0 0 0 0 c = Rubber duck 
0 0 0 90 5 0 0 5 0 0 d = Smartphone 

2.5 0 2.5 7.5 85 2.5 0 0 0 0 e = Bell pepper 
0 0 0 0 0 97.5 0 2.5 0 0 f = Wool 
0 0 5 0 0 0 95 0 0 0 g = Ball 
0 0 0 2.5 0 2.5 0 95 0 0 h = Sponge 
0 0 0 0 0 0 0 0 100 0 i = Can 

2.5 5 0 0 0 0 0 0 0 92.5 j = Apple 
 
 

4.3.5 Support Vector Machine (SVM) 

The confusion matrix in Table 6 shows the SVM classifier results. It reveals that 
the model achieved a performance of 96.25% (385 hits) of instances correctly 
classified. In this case, the SVM is superior to k-NN by 2% and superior to DT 
by 8%. The classes best classified were Can and Apple, both achieving 100% 
performance. By contrast, the class Bell pepper achieved the lowest performance 
(90% of correct classifications). 

 
Table 6 Confusion matrix for the Support Vector Machine algorithm. The classes Can and 
Apple achieved the best performance (100%). 
 

a b c d e f g h i j Classified as 
95 0 2.5 0 0 0 2.5 0 0 0 a = Mouse 
0 97.5 0 0 0 0 2.5 0 0 0 b = Scholar glue 

2.5 0 95 0 2.5 0 0 0 0 0 c = Rubber duck 
0 0 0 95 2.5 0 0 2.5 0 0 d = Smartphone 

2.5 0 0 7.5 90 0 0 0 0 0 e = Bell pepper 
0 0 0 0 0 97.5 0 2.5 0 0 f = Wool 
0 0 5 0 0 0 95 0 0 0 g = Ball 
0 0 0 2.5 0 0 0 97.5 0 0 h = Sponge 
0 0 0 0 0 0 0 0 100 0 i = Can 
0 0 0 0 0 0 0 0 0 100 j = Apple 
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4.4 Performance Using ROC 
Finally, we compared the models’ performances for TPR, FPR and AUC to 
discard misclassification in negative classes. We recall that the point closest to 
the coordinate (0, 1) is best in the ROC curve, and the AUC should ideally be 1 
for the best classification. Tables 7 – 16 show the results for the mentioned 
performance index. 

 
Table 7 Performance values for the personal computer Mouse class. 

 
Classifier AUC TPR FPR 
DT 0.908 0.800 0.031 
NB 0.996 0.875 0.011 
NN 0.998 0.925 0.008 
K-NN 0.947 0.900 0.006 
SVM 0.992 0.950 0.006 

 

Table 8 Performance values for the Scholar glue class. 
 

Classifier AUC TPR FPR 
DT 0.918 0.800 0.008 
NB 0.996 0.975 0.000 
NN 0.994 0.950 0.008 
K-NN 0.985 0.975 0.006 
SVM 0.994 0.975 0.000 

 
Table 9 Performance values for the Rubber duck class. 

 
Classifier AUC TPR FPR 
DT 0.918 0.800 0.014 
NB 0.994 0.850 0.014 
NN 0.997 0.975 0.014 
K-NN 0.994 1.000 0.011 
SVM 0.994 0.950 0.008 

 

Table 10 Performance values for the Smartphone class. 
 

Classifier AUC TPR FPR 
DT 0.953 0.925 0.008 
NB 0.995 0.925 0.011 
NN 0.995 0.900 0.014 
K-NN 0.945 0.900 0.011 
SVM 0.992 0.950 0.011 

 

Table 11 Performance values for the Bell pepper class. 
 

Classifier AUC TPR FPR 
DT 0.935 0.900 0.022 
NB 0.989 0.850 0.017 
NN 0.968 0.825 0.006 
K-NN 0.920 0.850 0.011 
SVM 0.985 0.900 0.006 
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Table 12 Performance values for the Wool class. 
 

Classifier AUC TPR FPR 
DT 0.969 0.925 0.011 
NB 0.998 0.975 0.008 
NN 0.997 0.975 0.003 
K-NN 0.985 0.975 0.006 
SVM 0.997 0.975 0.000 

 

Table 13 Performance values for the Ball class. 
 

Classifier AUC TPR FPR 
DT 0.967 0.950 0.011 
NB 0.992 0.950 0.006 
NN 0.997 0.925 0.006 
K-NN 0.972 0.950 0.006 
SVM 0.985 0.950 0.006 

 
Table 14 Performance values for the Sponge class. 

 
Classifier AUC TPR FPR 
DT 0.960 0.925 0.006 
NB 0.999 0.925 0.003 
NN 0.999 0.950 0.008 
K-NN 0.971 0.950 0.008 
SVM 0.996 0.975 0.006 

 

Table 15 Performance values for the soda Can class. 
 

Classifier AUC TPR FPR 
DT 0.987 0.975 0.003 
NB 1.000 1.000 0.000 
NN 1.000 1.000 0.003 
K-NN 1.000 1.000 0.000 
SVM 1.000 1.000 0.000 

 

Table 16 Performance values for the Apples class. 
 

Classifier AUC TPR FPR 
DT 0.928 0.825 0.017 
NB 1.000 1.000 0.006 
NN 0.999 0.925 0.006 
K-NN 0.963 0.925 0.000 
SVM 1.000 1.000 0.000 

 
 

4.5 General Analysis of Results 
Section 4.3 and Section 4.4 provide a quantitative comparison of the five 
classification algorithms according to Accuracy, FPR, FPR and AUC. This 
comparison allowed us to measure our pressure descriptor’s behaviour and its 
ability to separate different object classes. The classification performance ranged 
from 88.25% (DT) to 96.25% (SVM). 

The results in the confusion matrices show that DT achieved the lowest 
classification performance, with a minimum of only 80% of instances correctly 
classified. The classes that achieved the worst classification performance were 
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Mouse, Scholar glue and the Rubber duck. On the contrary, the SVM classifier 
achieved the best classifications, all above 90% of correctly classified instances. In 
this case, the classes Apple and Can gave 100% performance. 

The objects best classified by the algorithms were: the Can, with Decision 
Tree 97.5%, Naive Bayes 100%, Neural Network 100%, k-NN 100% and Support 
Vector Machine 100%, giving an average of 99.5% (average obtained among the 
five classifiers); the Wool with 96.5%; the Sponge and Ball with 94.5%; the 
School glue and Apple with 93.5%; the Smartphone with 92%; the Mouse with 
89%; and finally, the class that gave the lowest average classification percentage 
was Bell pepper with 86.5%. 

 
 

5 Conclusions 
In this study, we have described a recognition pipeline for a tactile recognition 
system. This system used a robotic gripper for object manipulation armed with 
tactile sensors that allowed a Machine Learning algorithm to recognize 
objects with high accuracy and sensitivity. 

Our recognition methodology required a training set of known objects 
obtained using the robotic gripper armed with a set of pressure sensors. The 
pipeline included the design of a pressure descriptor composed of ten voltage 
measurements retrieved from the pressure sensors using the methodology 
described in Section 3. The pressure descriptor allowed us to characterize rigid 
and flexible objects. The voltage variations from the tactile sensors were 
continuous values representing the local pressure applied to the object. 

We used a small dataset with ten object classes during experiments, 
similar to dataset sizes used in previous work. This size allowed us to generate 
a minimal prototype and evaluate our method at an early stage. Even a few 
object classes can lead to a less generalizable model; we expect to reduce this 
gap by adding more objects in a future version of this database. We evaluated 
the pressure descriptor’s benefits by training and testing a set of learning 
algorithms. The evaluation considered values of the TPR (True Positive Rate) 
and FPR (False Positive Rate) as performance measures, which correspond to 
the nearest point to the coordinate (0, 1) of the ROC curve. The results showed 
that the SVM achieved the best performance with a TPR = 95.5% and an FPR 
= 0.5%. These results are encouraging and indicate that recognizing objects 
using tactile sensing can be performed without human intervention. However, 
we acknowledge the implicit limitation in machine learning models for 
recognizing unknown objects. For example, the recognition algorithm will be 
unable to differentiate a pear if the dataset only contains apples or oranges as 
a training example. However, this kind of recognition system work is not for 
general operation. They typically have to analyze a limited set of objects 
when the system is in a real production environment. Currently, several 
production processes require manipulating objects to control their quality. For 
instance, companies that export fruit with a control line operated by humans 
can easily include this framework in their procedures, increasing the quality 
levels and objectivity in human inspection tasks. 

We visualize three research paths for future work. Firstly, we can improve 
the recognition pipeline and the pressure descriptor, exploring the best means of 
characterizing new surfaces and improving identification performance. 
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Secondly, we propose to run tests using different sensors to evaluate the 
variability of the measurements using different hardware, e.g. a professional 
gripper for industrial use, that would allow us to validate the repeatability of 
the descriptor. In this case, we propose input level normalization to avoid scale 
changes in using different hardware configurations for data acquisition. This 
change allows the model to be independent of the acquisition stage. Thirdly, 
we propose extending the recognition pipeline, including a computer vision 
system. This last stage would allow us to use visual features to enhance 
recognition capabilities and help human decision-making in automatic 
product quality assurance. 
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